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WAVES IN A HALF-SPACE WITH 
FREQUENCY* 

Green's function is constructed 

in the half-space z>O with a 

which is linear with respect to 

1. Formulation of the problem. 

for the equation of the internal waves 

square of the Brunt-Vaisala frequency 

Z. 

The generalized solution I'(t,~~,~,a,,) 

equation 

with the initial and boundary conditions 

is considered in the half-space z>O. 

r = 0, aArIa = 6 (I) 6 (I/) 6 (2 - zo) (t = 0) 

r = 0 (2 = 0) 

of the 

(1.1) 

(i.2) 

(1.3) 

It is obvious that, when this function is extended to zero at t<o, it satisfies the 

equation 
Lr = 6 (t) 6 (4 6 cy) 6 cz - +j (1.4) 

that is, it is Green's function for the internal wave equation when the square ofthebuoyancy 
frequency Na (z) = 8%; B = con&. 

The approximate expression for r has the form /l/ (J, is a Bessel function and v is 

an Airy function) 

(1.5) 

C/ = u (ox’* (oz - 2)) v (IT”* (oa - I~)) sin Eotl, (am) (i.6) 

Since v(5) satisfies Airy's equation, it can be shown that the function U and, together 

with it, also G is an exact solution of Eq.(l.l). The approximate nature of the function G 

manifests itself in the fact that it does not satisfy the boundary condition (1.3) while the 

second condition in (1.2) is satisfied with an accuracy up to a smooth term Y: 

-&AGI 1* = a@)a(u)a(z -20) + Y(r, 2. 20) 

It is natural to assume that the exact Green's function also has the form of (1.5), (1.6) 

where, however, the product of the Airy functions should be replaced by any other combination 

of solutions of Airy's equation for the same arguments. The condition regarding the symmetry 

of r with respect to z,'z~, the boundary conditions (1.3) and, finally, the requirement that 
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the integrand in (1.5) should have the same asymptotic form when a-+m and o<r,zO as in 
(1.6) (this condition is found to be essential if the initial conditions are to be satisfied) 
enabled us to guess the form of the function II and to write out the following expression: 

where 'D~,~ are the first and second Airy functions. Integral representations and the principal 
properties of the functions u,,w,, Y and v are given, for example, in /2, 3/. 

The aim of the present paper was to prove formula (1.7) for Green's function and to 
determine its asymptotic behaviour as t--+w as well as when t is fixed and I - z,J, f--r 0. The 
integral representations of the products of Airy functions used in this paper are derived in 
paragraph 5. 

2. Verification of the initial condition. The integrand in (1.2) is the solution 
of Eq.(l.l) and, hence, l', when t>o, is the generalized solution of this equation. It is 
obvious that l' satisfies condition (1.3) and the first equation in (1.2) and it therefore 
suffices to verify that the second condition in (1.2) is satisfied, that is, that 

%rI*+ = & [(r'-j- (2 + #)-l's -(r" +- (2 - *))-".I (2.1) 

If the variables p= CJ%I and fJ== uu are substituted into the integral which expresses 
ariat when t= 0, formula (2.1) reduces to the following relationships: 

m 

(2.2) 

(2.3) 

Let us outline the proof of these formulae. 
ma f&M% 

Taking account of the fact that D(&)=(u~(&)- 
we write Zz in the form Z,,+ I,, where 

(2.4) 

(2.5) 

We put p = I exp @i/3) in the integral I,, and pass to integration with respect to s. Taking 
account of (D,i3) from /3/, we get 

In calculating I,,, we make use of the asymptotic behaviour of the integrand in (2.5) 
when ]p]-m,O<argpdn/3 which follows from /3/ (pp.415-417). As a result, we get 

ZM = --'l+n exp I-q I z + z. {I -I- 0 (N-1) (27) 

BY using (2.6) and (2.7) to calculate I,, and taking account of (2.41, we get (2.2). 
In order to prove inequality (2.31, it is first necessary to integrate over the domain 

-p<n<%P>o (which does not change the value of the integral I,), secondly, to make the 
substitution q= PE and, thirdly, to make use of the integral representation (5.4) (paragraph 
5) for the product of the Airy functions. By integrating the resulting integral with respect 
to p (taking account of the fact that Ima>O and using formula 6.728 from /4/) and, then, 
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with respect to 5 and c(, we get (2.3). 
Hence, formula (1.7) for Green's function is proved. 

3. The asymptotic behaviour of r as t-.=. Let us write I- in the form 

1 
I- (17 r, Z>4) = &$g - sinBotY(w)do 

s 
II 

(3.') 

o’~‘J~ (uor) H (u”W) CD (z, u, co) 0 (20, u, w) do (3.2) 
0 

It can be seen from formula (3.1) that the asymptotic behaviour of r as t-m isdeter- 
mined, firstly, by the contribution of f*(t) to the integral (3.1) from the boundary of the 
interval of integration, and, secondly, by the contribution of fi(t) to (3.1) from the singular 
points of the function V(e): 

r (t, r, 2, %I) c fo (1) + k (t) (3.3) 
Let us show that, as t-w, the function f*(t) tends to zero more rapidly than t-r. In 

order to do this, it is sufficient to verify that 

lim Y(e) = 0 (3.4) 

0-O 

In the calculation of this limit, one may put o'law~=O, that is, it is possible to con- 
sider the integral 

We shall omit a rigoxous proof of this assertion because of its length and we shall 
merely note here that, as O-O, 0 < D < C/l" makes the main contribution to the integral (3.2) 
and within the limits of this interval, s'~uP+o, Let us carry out the following transformations 
on the integral which has been written out. Firstly, we introduce a factor exp(--go) under 
the integral sign and we shall consider the limit of the resulting expression as g-+0. Secondly, 
we shall make use of the integral representation /4/ (formula 8.44 (1)) for J, (00r) . Thirdly 
and finally, use is made of the integral representations (S-l)-(5.3), in which we put s = $‘a@ 
for the pairwise products of functions occurring in (3.5). By integrating with respect to (J 
and subsequently passing to the limit as q-0 and as o-0, we get the vanishing sum of the 
three multiple contour integrals, and (3.4) follows from this. 

Let us now find the function h(t) that is, the contribution to the asymptotic form of 
the integral (3.1) from the singular points of the function ‘Y(o). An analogous problem has 
been considered in /l/ for an approximate Green's function G(t,r,z,z,) which can be written 
in a form similar to (3.1) : 

G = - 1 sin BotF (0) dw (3.6) 

m 

F(o)=& I o*/a~o Q,~~J u (& (oa - 2)) u (2’. (toa - so)) do 

0 

.(3.7) 

The function Y(o) has the same singular points as F(e). Actually, by putting %,z (E;) = 
~(E)fiu(f) and using the well-known asymptotic forms of the functions u(E) and "(6) as S-m 
it is possible to write the difference F(o)-Y(e) (where Y(o) has the form of (3.2)) in the 
form of an integral with respect to a, the integrand in which exponentially decays as O-DO 
uniformly with respect to 0 (when o is bounded from below). Hence, F (0) -.‘y (0) isananalytica 
function of o when o>O and it follows from this that the contribution from the singular 
points of Y(w) to the asymptotic form of I' is identical with the contribution from the 
singular points of F(w) to the asymptotic form of G. By using the refining the results in 
paragraph 4 from /I/, we obtain that, as t-.X, the function f has the following asymptotic 
form: 

when $z < 'V&+ - z_)~~ 

r (t. r, z, 20) = 0 V-9 (3.3) 
when rl/L> V,(z+ - z..)"~ 

rft, rr 2, ~0) z (o,t)-'i.A(r,2,q,ol)sin eat + $- f ( ! f3.O) 

(o,r)-"JA(r,a,*,W2)4in(011-~)+O(t-a/.) 

Here a‘,2 = o,,, (r, 2, 10) are the roots of the equation 
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z._ = min (2, zo), z+ =i max (2, zo) 

A (r, .a, a,,, o) = (ZX)+~ [(3%-o’) (3% - aa)]-‘” [&_]‘” 

Fig.1 Fig.2 

We will now comment on the results which have been obtained. The domain T~Z< S/ll,(t+ - z_-f" 
forms two funnels V+and Y_ which emerge from the point r= O;a= z. (see Fig.1, where 3 = 1, 
zO= 1). Within these funnels, Green's function does not oscillate and decays more rapidly than 
t-1. Outside of the funnels, it decays as t-v* and consists of two oscillating terms, the 
characteristic period of the oscillations of which tends to zero as t-l. The crests of the 
waves of these terms are specified by the formulae 

@I,* fr,z,zo) = (n j= 'i,) x/(St) (n = i,2, * * .) (3.10) 

that is, they coincide with the lines of the level of the functions o1 and en. These level 
lines are shown in Fig.1: to the right of the axis r=O in the case of the function w, and 
to the left of this axis in the case of 0,. As t increases, the crests of each of the terms 
in (3.9) move towards decreasing e1r 81 that is, in the direction shown by the arrows in 
Fig.1. 

Let us put zO= NzlEe and make B tend to zero at fixed values of t, rr and z-z@. Then, 
V @. r> 2, so) will tend to Green's function f,(t,r,z-zz,f of the internal wave equation for a 
constant buoyancy frequency N. Cm passing to the limit in this manner, the funnels V, and If_ 
contract towards the r= 0 axis, the function % (r, x, 20) tends to N and o, tends to N leas@ I 
(where ctg0= Iz-zo I/r), while (3.9) passes into the well-known /5/ asymptotic form of the func- 
tion V0 as t--too. 

4. The asymptotic form of r when P>o,z-+--~~. When N= const, Green's function 
r,(t,r,z-zJ. has the form /5/ 

p = (9 + (a - qJy”*, CO8 e = 1 .a - .a0 1 /p 

that is, it has a singularity as p-0. Let us show that Green's function which has been con- 
structed above, V, has the same singularity as r,, when r-0,+-z, if the value of the Brunt- 
Vaisala frequency N on the horizon of the source z=zo, N, is taken as 36: 

(4.1) 

In order to prove (4.11, we note that the approximate Green's function G expressed by 
formulae (3.6) and (3.7) has the same singularity as r' when p-0. Actually, this singularity 
is due to the poor convergence of the integrals expressing I? and G when a,o-m while their 
difference is described by an integral which converges absolutely and uniformly with respect 
to r, a, and z0 when e,o--roo. It is therefore sufficient to find the limit of PG. 

Let us put r=psintl;g--z0=pcos9 and seek the limit of pG as p-0 and 0 is fixed. 
We use formulae (3.6) and (3.7) for G and formula (5.4) for the product of the Airy functions 
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after which we carry out a change of variables p= crr;q= aa-'/Sr-l and pass to the 
z - 20. By integrating the resulting expressions with respect to g and then with 
we get (4.1). 

limit as r-0; 
respect to p, 

5. Integral representations for products of Airy functions. Let us put 

F (a) = a~/iZ + a (P + q)/2 - (p - 9)2/(W 

where the contours Pk (k= 1,X,3,4) are shown in Fig.2. The following relations hold: 

In order 
equation both 

% (P) Wl (4 = II t5.1) 

W,(P) wz (9) = 1, (5.2) 

ml(P) w, (d + %(P) ml(q) = --I, (5.3) 

4u (P) u (9) = --I4 (5.4) 

to prove (5.1)-(5.4), we note that each of the integrals II, satisfies Airy's 
with respect to the variable p as well as with respect to the variable g. In 

fact, by applying the operators dzidpe-p a&l d2/dqP-q to Ik, we obtain 
ferential of the function ia-'/' expiF(a) under the integral sign. Allowing 
Ik are symmetrical with reSpeCt to q, we obtain 

the complete- dif- 
for the fact that the 

Ik = ,‘kWl (P) ml (4) + @ktwl b) w2 (4) + % (P) “‘1 (dl + GkW, (P) “‘2 (9) (5.5) 

In order to find the constants Yk. %,6x. we put p zz -ma, q= -n=v m,n&i and equate the 
asymptotic form of the right-hand side in (5.5) to the asymptotic form of the integrals 1, 
found by the method of steepest descent. As a result, we get formulae (5.1)-(5.4). 

1. 

2. 

3. 

4. 

5. 
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